Multiple myeloma cell killing by depletion of the MET receptor tyrosine kinase.
نویسندگان
چکیده
Multiple myeloma (MM) is an invariably fatal plasma cell malignancy, primarily due to the therapeutic resistance which ultimately arises. Much of the resistance results from the expression of various survival factors. Despite this, the ribonucleoside analogue, 8-chloro-adenosine (8-Cl-Ado), is cytotoxic to a number of MM cell lines. Previously, we established that the analogue incorporates into the RNA and inhibits mRNA synthesis. Because 8-Cl-Ado is able to overcome survival signals present in MM cells and inhibits mRNA synthesis, it is likely that the drug induces cytotoxicity by depleting the expression of critical MM survival genes. We investigated this question using gene array analysis, real-time reverse transcription-PCR, and immunoblot analysis on 8-Cl-Ado-treated MM.1S cells and found that the mRNA and protein levels of the receptor tyrosine kinase MET decrease prior to apoptosis. To determine MET's role in 8-Cl-Ado cytotoxicity, we generated MM.1S clones stably expressing a MET ribozyme. None of the clones expressed <25% of the basal levels of MET mRNA, suggesting that a threshold level of MET is necessary for their survival. Additionally, the ribozyme knockdown lines were more sensitive to the cytotoxic actions of 8-Cl-Ado as caspase-3 activation and the induction of poly-ADP-ribose polymerase (PARP) cleavage were more pronounced and evident 12 h earlier than in the parental cells. We further established MET's role in MM cell survival by demonstrating that a retroviral MET RNA interference construct induces PARP cleavage in MM.1S cells. These results show that MET provides a survival mechanism for MM cells. 8-Cl-Ado overcomes MM cell survival by a mechanism that involves the depletion of MET.
منابع مشابه
Frequency of FLT3 ITD and FLT3 TKD Mutations in Multiple Myeloma Patients (A Case Control Study)
Background and Aims: Multiple myeloma is a malignant proliferation of plasma cells derived from a single clone. The tumor, its products and the host response lead to organ damages. Some factors that are responsible in its pathogenesis are recognized. As FMS like Tyrosine Kinase 3 receptor (FLT3) mutation has been proved as a determining factor in leukemic patients the goal of this study was to ...
متن کاملN-Acetylcysteine Compared to Metformin, Improves The Expression Profile of Growth Differentiation Factor-9 and Receptor Tyrosine Kinase c-Kit in The Oocytes of Patients with Polycystic Ovarian Syndrome
Objective Paracrine disruption of growth factors in women with polycystic ovarian syndrome results in production of low quality oocyte, especially following ovulation induction. The aim of this study was to investigate the effects of metformin (MET), N-acetylcysteine (NAC) and their combination on the hormonal levels and expression profile of GDF-9, BMP-15 and c-Kit, as hallmarks of oocyte qual...
متن کاملFMS-like Tyrosine Kinase-3 Mutation in a Child with Standard-risk ALL and Normal Karyotype
FMS-like tyrosine kinase-3 is a receptor tyrosine kinase expressed by immature hematopoietic cells and is important for the normal development of stem cells and the immune system. Mutations of FMS-like tyrosine kinase-3 have been detected in about 30% of patients with acute myelogenous leukemia and a small number of patients with acute lymphoblastic leukemia. The FMS-like tyrosine kinase-3 muta...
متن کاملA selective c-met inhibitor blocks an autocrine hepatocyte growth factor growth loop in ANBL-6 cells and prevents migration and adhesion of myeloma cells.
PURPOSE We wanted to examine the role of the hepatocyte growth factor (HGF) receptor c-Met in multiple myeloma by applying a novel selective small molecule tyrosine kinase inhibitor, PHA-665752, directed against the receptor. EXPERIMENTAL DESIGN Four biological sequels of HGF related to multiple myeloma were studied: (1) proliferation of myeloma cells, (2) secretion of interleukin-11 from ost...
متن کاملMultiple Myeloma Bone Marrow Mesenchymal Stromal Cells Inhibit CD8+ T Cell Function in a Process that May Implicate Fibroblast Activation Protein α
Background: Multiple myeloma (MM) is a malignant plasma cell proliferative disorder with limited immunotherapy treatment because of T cell dysfunction. Objective: To investigate the immunomodulatory function of bone marrow mesenchymal stromal cells (MM-BMSCs) on CD8+ T cells. Methods: Proliferation and cytotoxicity were detected by c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 67 20 شماره
صفحات -
تاریخ انتشار 2007